Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2016): 20232361, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38351802

RESUMEN

Reports of fading vole and lemming population cycles and persisting low populations in some parts of the Arctic have raised concerns about the spread of these fundamental changes to tundra food web dynamics. By compiling 24 unique time series of lemming population fluctuations across the circumpolar region, we show that virtually all populations displayed alternating periods of cyclic/non-cyclic fluctuations over the past four decades. Cyclic patterns were detected 55% of the time (n = 649 years pooled across sites) with a median periodicity of 3.7 years, and non-cyclic periods were not more frequent in recent years. Overall, there was an indication for a negative effect of warm spells occurring during the snow onset period of the preceding year on lemming abundance. However, winter duration or early winter climatic conditions did not differ on average between cyclic and non-cyclic periods. Analysis of the time series shows that there is presently no Arctic-wide collapse of lemming cycles, even though cycles have been sporadic at most sites during the last decades. Although non-stationary dynamics appears a common feature of lemming populations also in the past, continued warming in early winter may decrease the frequency of periodic irruptions with negative consequences for tundra ecosystems.


Asunto(s)
Arvicolinae , Ecosistema , Animales , Dinámica Poblacional , Estaciones del Año , Cadena Alimentaria , Regiones Árticas
2.
Emerg Infect Dis ; 29(1): 54-63, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36573538

RESUMEN

Northern Canada is warming at 3 times the global rate. Thus, changing diversity and distribution of vectors and pathogens is an increasing health concern. California serogroup (CSG) viruses are mosquitoborne arboviruses; wildlife reservoirs in northern ecosystems have not been identified. We detected CSG virus antibodies in 63% (95% CI 58%-67%) of caribou (n = 517), 4% (95% CI 2%-7%) of Arctic foxes (n = 297), 12% (95% CI 6%-21%) of red foxes (n = 77), and 28% (95% CI 24%-33%) of polar bears (n = 377). Sex, age, and summer temperatures were positively associated with polar bear exposure; location, year, and ecotype were associated with caribou exposure. Exposure was highest in boreal caribou and increased from baseline in polar bears after warmer summers. CSG virus exposure of wildlife is linked to climate change in northern Canada and sustained surveillance could be used to measure human health risks.


Asunto(s)
Virus de la Encefalitis de California , Reno , Ursidae , Animales , Humanos , Zorros , Ecosistema , Serogrupo , Animales Salvajes , Canadá/epidemiología
3.
J Wildl Dis ; 58(1): 241-244, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34814183

RESUMEN

The arctic fox variant of the rabies virus (RABV) is enzootic in the circumpolar north. Reports of abortive RABV exposures motivated a retrospective analysis of sera from 41 arctic foxes (Vulpes lagopus) captured at Karrak Lake in Nunavut, Canada, during 2011-15. Estimated RABV antibody prevalence among foxes was 15% (95% confidence interval, 7-28%).


Asunto(s)
Virus de la Rabia , Rabia , Animales , Regiones Árticas , Canadá/epidemiología , Zorros , Nunavut/epidemiología , Rabia/epidemiología , Rabia/veterinaria , Estudios Retrospectivos
4.
Pathogens ; 12(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36678376

RESUMEN

Tularemia is a zoonotic disease found throughout most of the northern hemisphere that may experience range expansion with warming temperatures. Rodents and lagomorphs are reservoirs for the disease, and outbreaks of tularemia often follow peaks in their abundance. As small mammals dominate the diet of arctic foxes (Vulpes lagopus), we determined whether they may serve as sentinels by identifying antibodies in live-captured and harvested foxes from northern Canada. Overall seroprevalence was 2% (CI95 1-2%) in 176 foxes harvested in 2018-2019 compared to 17% (CI95 12-22%) of 230 foxes captured live in 2011-2021. Prevalence was at an all-time high in 2018, following a peak in vole abundance in 2017. Antibodies were identified in fox pups born in 2018 and 2019, suggesting that F. tularensis was actively transmitted during the summers. High precipitation during the summer, increased snow cover and colder temperatures in May, and a higher abundance of voles were all associated with increased seroprevalence in live-captured foxes. Thus, exposure to F. tularensis is largely mediated through climate and rodent populations in the Canadian Arctic, and arctic foxes are useful sentinels for F. tularensis in northern ecosystems. Further studies should investigate whether infection impacts arctic fox survival and reproductive success in the circumpolar North.

5.
Sci Rep ; 11(1): 5410, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33686142

RESUMEN

Plasticity for breeding dates may influence population vulnerability to climate change via phenological mismatch between an organism's life cycle requirements and resource availability in occupied environments. Some life history traits may constrain plasticity, however there have been remarkably few comparisons of how closely-related species, differing in key traits, respond to common phenology gradients. We compared population- and individual-level plasticity in clutch initiation dates (CID) in response to spring temperature among five duck species with early- to late-season nesting life histories. Plasticity was strongest in females of the earliest breeding species (common goldeneye [Bucephala clangula], mallard [Anas platyrhynchos], and gadwall [Mareca strepera]), whereas late-nesting lesser scaup (Aythya affinis) and white-winged scoter (Melanitta fusca deglandi) did not respond. These results contrast with previous work in other bird families that suggested late-breeders are generally more flexible. Nevertheless, late-breeding species exhibited annual variation in mean CID, suggesting response to other environmental factors unrelated to spring temperature. Goldeneye and gadwall females varied in their strength of individual plasticity ('individual × environment' interactions) and goldeneye and scoter females showed evidence of interannual repeatability of CID. Fitness consequences of CID plasticity in response to spring phenology, including trophic mechanisms and population consequences, warrant investigation.


Asunto(s)
Patos/fisiología , Reproducción/fisiología , Estaciones del Año , Animales , Cambio Climático , Femenino , Masculino
6.
Parasit Vectors ; 13(1): 469, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32928287

RESUMEN

BACKGROUND: In a warmer and more globally connected Arctic, vector-borne pathogens of zoonotic importance may be increasing in prevalence in native wildlife. Recently, Bartonella henselae, the causative agent of cat scratch fever, was detected in blood collected from arctic foxes (Vulpes lagopus) that were captured and released in the large goose colony at Karrak Lake, Nunavut, Canada. This bacterium is generally associated with cats and cat fleas, which are absent from Arctic ecosystems. Arctic foxes in this region feed extensively on migratory geese, their eggs, and their goslings. Thus, we hypothesized that a nest flea, Ceratophyllus vagabundus vagabundus (Boheman, 1865), may serve as a vector for transmission of Bartonella spp. METHODS: We determined the prevalence of Bartonella spp. in (i) nest fleas collected from 5 arctic fox dens and (ii) 37 surrounding goose nests, (iii) fleas collected from 20 geese harvested during arrival at the nesting grounds and (iv) blood clots from 57 adult live-captured arctic foxes. A subsample of fleas were identified morphologically as C. v. vagabundus. Remaining fleas were pooled for each nest, den, or host. DNA was extracted from flea pools and blood clots and analyzed with conventional and real-time polymerase chain reactions targeting the 16S-23S rRNA intergenic transcribed spacer region. RESULTS: Bartonella henselae was identified in 43% of pooled flea samples from nests and 40% of pooled flea samples from fox dens. Bartonella vinsonii berkhoffii was identified in 30% of pooled flea samples collected from 20 geese. Both B. vinsonii berkhoffii (n = 2) and B. rochalimae (n = 1) were identified in the blood of foxes. CONCLUSIONS: We confirm that B. henselae, B. vinsonii berkhoffii and B. rochalimae circulate in the Karrak Lake ecosystem and that nest fleas contain B. vinsonii and B. henselae DNA, suggesting that this flea may serve as a potential vector for transmission among Arctic wildlife.


Asunto(s)
Infecciones por Bartonella/veterinaria , Bartonella/fisiología , Enfermedades de las Aves/microbiología , Zorros/microbiología , Gansos/microbiología , Siphonaptera/microbiología , Animales , Animales Salvajes/microbiología , Bartonella/clasificación , Bartonella/genética , Bartonella/aislamiento & purificación , Infecciones por Bartonella/microbiología , Infecciones por Bartonella/transmisión , Vectores de Enfermedades , Ecosistema , Infestaciones por Pulgas/parasitología , Infestaciones por Pulgas/veterinaria , Zorros/sangre , Especificidad del Huésped , Nunavut , Siphonaptera/clasificación , Siphonaptera/fisiología
7.
PeerJ ; 8: e9382, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32612891

RESUMEN

Joint encounter (JE) models estimate demographic rates using live recapture and dead recovery data. The extent to which limited recapture or recovery data can hinder estimation in JE models is not completely understood. Yet limited data are common in ecological research. We designed a series of simulations using Bayesian multistate JE models that spanned a large range of potential recapture probabilities (0.01-0.90) and two reported mortality probabilities (0.10, 0.19). We calculated bias by comparing estimates against known probabilities of survival, fidelity and reported mortality. We explored whether sparse data (i.e., recapture probabilities <0.02) compromised inference about survival by comparing estimates from dead recovery (DR) and JE models using an 18-year data set from a migratory bird, the lesser snow goose (Anser caerulescens caerulescens). Our simulations showed that bias in probabilities of survival, fidelity and reported mortality was relatively low across a large range of recapture probabilities, except when recapture and reported mortality probabilities were both lowest. While bias in fidelity probability was similar across all recapture probabilities, the root mean square error declined substantially with increased recapture probabilities for reported mortality probabilities of 0.10 or 0.19, as expected. In our case study, annual survival probabilities for adult female snow geese were similar whether estimated with JE or DR models, but more precise from JE models than those from DR models. Thus, our simulated and empirical data suggest acceptably minimal bias in survival, fidelity or reported mortality probabilities estimated from JE models. Even a small amount of recapture information provided adequate structure for JE models, except when reported mortality probabilities were <0.10. Thus, practitioners with limited recapture data should not be discouraged from use of JE models. We recommend that ecologists incorporate other data types as frequently as analytically possible, since precision of focal parameters is improved, and additional parameters of interest can be estimated.

9.
Ambio ; 49(3): 786-800, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31332767

RESUMEN

Lemmings are a key component of tundra food webs and changes in their dynamics can affect the whole ecosystem. We present a comprehensive overview of lemming monitoring and research activities, and assess recent trends in lemming abundance across the circumpolar Arctic. Since 2000, lemmings have been monitored at 49 sites of which 38 are still active. The sites were not evenly distributed with notably Russia and high Arctic Canada underrepresented. Abundance was monitored at all sites, but methods and levels of precision varied greatly. Other important attributes such as health, genetic diversity and potential drivers of population change, were often not monitored. There was no evidence that lemming populations were decreasing in general, although a negative trend was detected for low arctic populations sympatric with voles. To keep the pace of arctic change, we recommend maintaining long-term programmes while harmonizing methods, improving spatial coverage and integrating an ecosystem perspective.


Asunto(s)
Arvicolinae , Ecosistema , Animales , Regiones Árticas , Canadá , Dinámica Poblacional , Federación de Rusia
10.
Ecol Evol ; 9(2): 859-867, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30766675

RESUMEN

Aerial survey is an important, widely employed approach for estimating free-ranging wildlife over large or inaccessible study areas. We studied how a distance covariate influenced probability of double-observer detections for birds counted during a helicopter survey in Canada's central Arctic. Two observers, one behind the other but visually obscured from each other, counted birds in an incompletely shared field of view to a distance of 200 m. Each observer assigned detections to one of five 40-m distance bins, guided by semi-transparent marks on aircraft windows. Detections were recorded with distance bin, taxonomic group, wing-flapping behavior, and group size. We compared two general model-based estimation approaches pertinent to sampling wildlife under such situations. One was based on double-observer methods without distance information, that provide sampling analogous to that required for mark-recapture (MR) estimation of detection probability, p ^ , and group abundance, G ^ , along a fixed-width strip transect. The other method incorporated double-observer MR with a categorical distance covariate (MRD). A priori, we were concerned that estimators from MR models were compromised by heterogeneity in p ^ due to un-modeled distance information; that is, more distant birds are less likely to be detected by both observers, with the predicted effect that p ^ would be biased high, and G ^ biased low. We found that, despite increased complexity, MRD models (ΔAICc range: 0-16) fit data far better than MR models (ΔAICc range: 204-258). However, contrary to expectation, the more naïve MR estimators of p ^ were biased low in all cases, but only by 2%-5% in most cases. We suspect that this apparently anomalous finding was the result of specific limitations to, and trade-offs in, visibility by observers on the survey platform used. While MR models provided acceptable point estimates of group abundance, their far higher stranded errors (0%-40%) compared to MRD estimates would compromise ability to detect temporal or spatial differences in abundance. Given improved precision of MRD models relative to MR models, and the possibility of bias when using MR methods from other survey platforms, we recommend avian ecologists use MRD protocols and estimation procedures when surveying Arctic bird populations.

11.
J Wildl Dis ; 55(3): 619-626, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30485167

RESUMEN

Transmission dynamics of Toxoplasma gondii, a parasite of importance for wildlife and human health, are enigmatic in the Arctic tundra, where free-ranging wild and domestic felid definitive hosts are absent and rarely observed, respectively. Through a multiyear mark-recapture study (2011-17), serosurveillance was conducted to investigate transmission of T. gondii in Arctic foxes (Vulpes lagopus) in the Karrak Lake region, Nunavut, Canada. Sera from adult foxes and fox pups were tested for antibodies to T. gondii by using serologic methods, including the indirect fluorescent antibody test, direct agglutination test, and modified agglutination test. The overall seroprevalence was 39% in adults and 17% in pups. Mature foxes were more likely to be exposed (seroconvert) than young foxes (less than 1 yr old), with the highest level of seroprevalence in midaged foxes (2-4 yr old). Pups in two different litters were seropositive on emergence from the den, around 5 wk old, which could have been due to passive transfer of maternal antibody or vertical transmission of T. gondii from mother to offspring. The seropositive pups were born of seropositive mothers that were also seropositive the year before they gave birth, suggesting that vertical transmission might not be limited to litters from mothers exposed to T. gondii for the first time in pregnancy. All recaptured seropositive foxes remained seropositive on subsequent captures, suggesting that antibodies persist or foxes are constantly reexposed or a combination of both. The results of this study provided insights into how foxes were likely exposed to T. gondii, the dynamics of antibody persistence and immune response, and how the parasite was maintained in a terrestrial Arctic ecosystem in the absence of felid definitive hosts.


Asunto(s)
Zorros/parasitología , Toxoplasma/aislamiento & purificación , Toxoplasmosis Animal/parasitología , Animales , Anticuerpos Antiprotozoarios/sangre , Femenino , Zorros/sangre , Inmunidad Materno-Adquirida , Masculino , Nunavut/epidemiología , Factores de Tiempo , Toxoplasmosis Animal/sangre , Toxoplasmosis Animal/epidemiología , Toxoplasmosis Animal/transmisión
12.
Ecology ; 98(7): 1869-1883, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28403519

RESUMEN

A full understanding of population dynamics depends not only on estimation of mechanistic contributions of recruitment and survival, but also knowledge about the ecological processes that drive each of these vital rates. The process of recruitment in particular may be protracted over several years, and can depend on numerous ecological complexities until sexually mature adulthood is attained. We addressed long-term declines (23 breeding seasons, 1992-2014) in the per capita production of young by both Ross's Geese (Chen rossii) and Lesser Snow Geese (Chen caerulescens caerulescens) nesting at Karrak Lake in Canada's central Arctic. During this period, there was a contemporaneous increase from 0.4 to 1.1 million adults nesting at this colony. We evaluated whether (1) density-dependent nutritional deficiencies of pre-breeding females or (2) phenological mismatch between peak gosling hatch and peak forage quality, inferred from NDVI on the brood-rearing areas, may have been behind decadal declines in the per capita production of goslings. We found that, in years when pre-breeding females arrived to the nesting grounds with diminished nutrient reserves, the proportional composition of young during brood-rearing was reduced for both species. Furthermore, increased mismatch between peak gosling hatch and peak forage quality contributed additively to further declines in gosling production, in addition to declines caused by delayed nesting with associated subsequent negative effects on clutch size and nest success. The degree of mismatch increased over the course of our study because of advanced vegetation phenology without a corresponding advance in Goose nesting phenology. Vegetation phenology was significantly earlier in years with warm surface air temperatures measured in spring (i.e., 25 May-30 June). We suggest that both increased phenological mismatch and reduced nutritional condition of arriving females were behind declines in population-level recruitment, leading to the recent attenuation in population growth of Snow Geese.


Asunto(s)
Gansos/fisiología , Herbivoria , Animales , Regiones Árticas , Canadá , Femenino , Reproducción , Estaciones del Año
13.
Int J Parasitol Parasites Wildl ; 6(1): 22-28, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28229044

RESUMEN

The patterns and mechanisms by which biological diversity is associated with parasite infection risk are important to study because of their potential implications for wildlife population's conservation and management. Almost all research in this area has focused on host species diversity and has neglected parasite diversity, despite evidence that parasites are important drivers of community structure and ecosystem processes. Here, we assessed whether presence or abundance of each of nine helminth species parasitizing lesser snow geese (Chen caerulescens) was associated with indices of parasite diversity (i.e. species richness and Shannon's Diversity Index). We found repeated instances of focal parasite presence and abundance having significant positive co-variation with diversity measures of other parasites. These results occurred both within individual samples and for combinations of all samples. Whereas host condition and parasite facilitation could be drivers of the patterns we observed, other host- or parasite-level effects, such as age or sex class of host or taxon of parasite, were discounted as explanatory variables. Our findings of recurring and positive associations between focal parasite abundance and diversity underscore the importance of moving beyond pairwise species interactions and contexts, and of including the oft-neglected parasite species diversity in infection-diversity studies.

14.
Int J Parasitol ; 46(9): 563-70, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27155329

RESUMEN

Increasingly, birds are recognised as important hosts for the ubiquitous parasite Toxoplasma gondii, although little experimental evidence exists to determine which tissues should be tested to maximise the detection probability of T. gondii. Also, Arctic-nesting geese are suspected to be important sources of T. gondii in terrestrial Arctic ecosystems, but the parasite has not previously been reported in the tissues of these geese. Using a domestic goose model, we applied a multi-scale occupancy framework to demonstrate that the probability of detection of T. gondii was highest in the brain (0.689, 95% confidence interval=0.486, 0.839) and the heart (0.809, 95% confidence interval=0.693, 0.888). Inoculated geese had an estimated T. gondii infection probability of 0.849, (95% confidence interval=0.643, 0.946), highlighting uncertainty in the system, even under experimental conditions. Guided by these results, we tested the brains and hearts of wild Ross's Geese (Chen rossii, n=50) and Lesser Snow Geese (Chen caerulescens, n=50) from Karrak Lake, Nunavut, Canada. We detected 51 suspected positive tissue samples from 33 wild geese using real-time PCR with melt-curve analysis. The wild goose prevalence estimates generated by our multi-scale occupancy analysis were higher than the naïve estimates of prevalence, indicating that multiple PCR repetitions on the same organs and testing more than one organ could improve T. gondii detection. Genetic characterisation revealed Type III T. gondii alleles in six wild geese and Sarcocystis spp. in 25 samples. Our study demonstrates that Arctic nesting geese are capable of harbouring T. gondii in their tissues and could transport the parasite from their southern overwintering grounds into the Arctic region. We demonstrate how a multi-scale occupancy framework can be used in a domestic animal model to guide resource-limited sample collection and tissue analysis in wildlife. Secondly, we confirm the value of traditional occupancy in optimising T. gondii detection probability in tissue samples.


Asunto(s)
Gansos/parasitología , Enfermedades de las Aves de Corral/parasitología , Toxoplasma/aislamiento & purificación , Toxoplasmosis Animal/parasitología , Animales , Regiones Árticas , Encéfalo/parasitología , Canadá/epidemiología , Pollos/parasitología , ADN Protozoario/genética , Corazón/parasitología , Enfermedades de las Aves de Corral/epidemiología , Prevalencia , Probabilidad , Toxoplasma/genética , Toxoplasmosis Animal/epidemiología
15.
J Wildl Dis ; 52(1): 47-56, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26745833

RESUMEN

Although the protozoan parasite Toxoplasma gondii is ubiquitous in birds and mammals worldwide, the full suite of hosts and transmission routes is not completely understood, especially in the Arctic. Toxoplasma gondii occurrence in humans and wildlife can be high in Arctic regions, despite apparently limited opportunities for transmission of oocysts shed by felid definitive hosts. Arctic foxes (Vulpes lagopus) are under increasing anthropogenic and ecologic pressure, leading to population declines in parts of their range. Our understanding of T. gondii occurrence in arctic foxes is limited to only a few regions, but mortality events caused by this parasite have been reported. We investigated the exposure of arctic foxes to T. gondii in the Karrak Lake goose colony, Queen Maud Gulf Migratory Bird Sanctuary, Nunavut, Canada. Following an occupancy-modeling framework, we performed replicated antibody testing on serum samples by direct agglutination test (DAT), indirect fluorescent antibody test (IFAT), and an indirect enzyme-linked immunosorbent assay (ELISA) that can be used in multiple mammalian host species. As a metric of test performance, we then estimated the probability of detecting T. gondii antibodies for each of the tests. Occupancy estimates for T. gondii antibodies in arctic foxes under this framework were between 0.430 and 0.758. Detection probability was highest for IFAT (0.716) and lower for DAT (0.611) and ELISA (0.464), indicating that the test of choice for antibody detection in arctic foxes might be the IFAT. We document a new geographic record of T. gondii exposure in arctic foxes and demonstrate an emerging application of ecologic modeling techniques to account for imperfect performance of diagnostic tests in wildlife species.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Zorros/parasitología , Toxoplasma/inmunología , Toxoplasmosis Animal/epidemiología , Pruebas de Aglutinación/veterinaria , Animales , Regiones Árticas/epidemiología , Ensayo de Inmunoadsorción Enzimática/veterinaria , Femenino , Técnica del Anticuerpo Fluorescente Indirecta/veterinaria , Masculino , Modelos Biológicos , Nunavut/epidemiología , Toxoplasmosis Animal/inmunología
16.
Res Vet Sci ; 99: 58-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25596149

RESUMEN

Because of the relatively low biodiversity within arctic ecosystems, arctic foxes, Vulpes lagopus, could serve as sentinels for the study of changes in the ecology of vector-borne zoonotic pathogens. The objective of this study was to determine the molecular prevalence of 5 different genera of vector borne pathogens (Anaplasma, Babesia, Bartonella, Ehrlichia, and Hemotropic Mycoplasma spp.) using blood collected from 28 live-trapped arctic foxes from the region of Karrak Lake, Nunavut, Canada. Bartonella henselae (n = 3), Mycoplasma haemocanis (n = 1), Ehrlichia canis (n = 1), and an Anaplasma sp. (n = 1) DNA were PCR amplified and subsequently identified by sequencing. This study provides preliminary evidence that vector borne pathogens, not typically associated with the arctic ecosystem, exist at low levels in this arctic fox population, and that vector exposure, pathogen transmission dynamics, and changes in the geographic distribution of pathogens over time should be investigated in future studies.


Asunto(s)
Babesiosis/epidemiología , Zorros/microbiología , Infecciones por Bacterias Gramnegativas/epidemiología , Anaplasma/genética , Animales , Babesia/genética , Bartonella/genética , Canadá/epidemiología , ADN Bacteriano/genética , Ehrlichia/genética , Zorros/sangre , Mycoplasma/genética , Reacción en Cadena de la Polimerasa/veterinaria , Prevalencia
17.
Int J Parasitol Parasites Wildl ; 3(2): 81-7, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25161905

RESUMEN

Echinococcus multilocularis is a zoonotic cestode with a distribution encompassing the northern hemisphere that causes alveolar hydatid disease in people and other aberrant hosts. E. multilocularis is not genetically uniform across its distribution, which may have implications for zoonotic transmission and pathogenicity. Recent findings of a European-type haplotype of E. multilocularis in wildlife in one location in western Canada motivated a broader survey of the diversity of this parasite in wildlife from northern and western Canada. We obtained intact adult cestodes of E. multilocularis from the intestines of 41 wild canids (wolf - Canis lupus, coyote - Canis latrans, and red fox - Vulpes vulpes), taeniid eggs from 28 fecal samples from Arctic fox (Vulpes lagopus), and alveolar hydatid cysts from 39 potential rodent intermediate hosts. Upon sequencing a 370-nucelotide region of the NADH dehydrogenase subunit 1 (nad1) mitochondrial locus, 17 new haplotypes were identified. This constitutes a much higher diversity than expected, as only two genotypes (European and an Asian/North American) had previously been identified using this locus. The European-type strain, recently introduced, may be widespread in wildlife within western Canada, possibly related to the large home ranges and wide dispersal range of wild canids. This study increased understanding of the biogeographic distribution, prevalence and genetic differences of a globally important pathogenic cestode in northern and western Canada.

18.
Int J Parasitol Parasites Wildl ; 3(2): 147-53, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25161913

RESUMEN

The zoonotic parasite, Toxoplasma gondii, has a worldwide distribution and a cosmopolitan suite of hosts. In arctic tundra regions, the definitive felid hosts are rare to absent and, while the complete transmission routes in such regions have yet to be fully elucidated, trophic and vertical routes are likely to be important. Wild birds are common intermediate hosts of T. gondii, and in the central Canadian arctic, geese are probable vectors of the parasite from temperate latitudes to the arctic regions. Our objective was to estimate seroprevalence of T. gondii in Ross's and Lesser Snow Geese from the Karrak Lake ecosystem in Nunavut, Canada. After harvesting geese by shotgun, we collected blood on filter paper strips and tested the eluate for T. gondii antibodies by indirect fluorescent antibody test (IFAT) and direct agglutination test (DAT). We estimated seroprevalence using a multi-state occupancy model, which reduced bias by accounting for imperfect detection, and compared these estimates to a naïve estimator. Ross's Geese had a 0.39 probability of seropositivity, while for Lesser Snow Geese the probability of positive for T. gondii antibodies was 0.36. IFAT had a higher antibody detection probability than DAT, but IFAT also had a higher probability of yielding ambiguous or unclassifiable results. The results of this study indicate that Ross's Geese and Lesser Snow Geese migrating to the Karrak Lake region of Nunavut are routinely exposed to T. gondii at some point in their lives and that they are likely intermediate hosts of the parasite. Also, we were able to enhance our estimation of T. gondii seroprevalence by using an occupancy approach that accounted for both false-negative and false-positive detections and by using multiple diagnostic tests in the absence of a gold standard serological assay for wild geese.

19.
Ecol Evol ; 4(2): 132-43, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24558569

RESUMEN

Estimates of range-wide abundance, harvest, and harvest rate are fundamental for sound inferences about the role of exploitation in the dynamics of free-ranging wildlife populations, but reliability of existing survey methods for abundance estimation is rarely assessed using alternative approaches. North American mallard populations have been surveyed each spring since 1955 using internationally coordinated aerial surveys, but population size can also be estimated with Lincoln's method using banding and harvest data. We estimated late summer population size of adult and juvenile male and female mallards in western, midcontinent, and eastern North America using Lincoln's method of dividing (i) total estimated harvest, [Formula: see text], by estimated harvest rate, [Formula: see text], calculated as (ii) direct band recovery rate, [Formula: see text], divided by the (iii) band reporting rate, [Formula: see text]. Our goal was to compare estimates based on Lincoln's method with traditional estimates based on aerial surveys. Lincoln estimates of adult males and females alive in the period June-September were 4.0 (range: 2.5-5.9), 1.8 (range: 0.6-3.0), and 1.8 (range: 1.3-2.7) times larger than respective aerial survey estimates for the western, midcontinent, and eastern mallard populations, and the two population estimates were only modestly correlated with each other (western: r = 0.70, 1993-2011; midcontinent: r = 0.54, 1961-2011; eastern: r = 0.50, 1993-2011). Higher Lincoln estimates are predictable given that the geographic scope of inference from Lincoln estimates is the entire population range, whereas sampling frames for aerial surveys are incomplete. Although each estimation method has a number of important potential biases, our review suggests that underestimation of total population size by aerial surveys is the most likely explanation. In addition to providing measures of total abundance, Lincoln's method provides estimates of fecundity and population sex ratio and could be used in integrated population models to provide greater insights about population dynamics and management of North American mallards and most other harvested species.

20.
Artículo en Inglés | MEDLINE | ID: mdl-24533320

RESUMEN

The parasites of arctic foxes in the central Canadian Arctic have not been well described. Canada's central Arctic is undergoing dramatic environmental change, which is predicted to cause shifts in parasite and wildlife species distributions, and trophic interactions, requiring that baselines be established to monitor future alterations. This study used conventional, immunological, and molecular fecal analysis techniques to survey the current gastrointestinal endoparasite fauna currently present in arctic foxes in central Nunavut, Canada. Ninety-five arctic fox fecal samples were collected from the terrestrial Karrak Lake ecosystem within the Queen Maud Gulf Migratory Bird Sanctuary. Samples were examined by fecal flotation to detect helminths and protozoa, immunofluorescent assay (IFA) to detect Cryptosporidium and Giardia, and quantitative PCR with melt-curve analysis (qPCR-MCA) to detect coccidia. Positive qPCR-MCA products were sequenced and analyzed phylogenetically. Arctic foxes from Karrak Lake were routinely shedding eggs from Toxascaris leonina (63%). Taeniid (15%), Capillarid (1%), and hookworm eggs (2%), Sarcocystis sp. sporocysts 3%), and Eimeria sp. (6%), and Cystoisospora sp. (5%) oocysts were present at a lower prevalence on fecal flotation. Cryptosporidium sp. (9%) and Giardia sp. (16%) were detected by IFA. PCR analysis detected Sarcocystis (15%), Cystoisospora (5%), Eimeria sp., and either Neospora sp. or Hammondia sp. (1%). Through molecular techniques and phylogenetic analysis, we identified two distinct lineages of Sarcocystis sp. present in arctic foxes, which probably derived from cervid and avian intermediate hosts. Additionally, we detected previously undescribed genotypes of Cystoisospora. Our survey of gastrointestinal endoparasites in arctic foxes from the central Canadian Arctic provides a unique record against which future comparisons can be made.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...